Тег «атом»

СВЕДЕНИЯ 0 КРИСТАЛЛИЗАЦИИ МЕТАЛЛОВ И СПЛАВОВ

Кристаллизация металлов. Пространственные кристаллические решетки образуются в металле при его переходе из жидкого состояния в твердое. Этот процесс называется кристаллизацией. Превращения, происходящие в процессе кристаллизации, имеют важное значение, так как в значительной степени определяют свойства металла. Впервые процессы кристаллизации были изучены русским ученым Д. К. Черновым. Кри- сталлизация состоит в следующем. В жидком металле атомы непрерывно движутся. По мере понижения температуры движение замедляется, атомы сближаются и группируются в кристаллы. Эта первичная группа кристаллов получила название центров кристаллизации. Далее к этим центрам присоеди»яются вновь образующиеся кристаллы. Одновременно продолжается образование новых центров. Таким образом, кристаллиза- Рис. 2. Схема процесса кристаллизации металла ция состоит из двух стадий: образования центров кристаллизации и роста кристаллов вокруг этих центров. На рис. 2 показан механизм кристаллизации. Сначала рост кристаллов не встречает препятствий (рис. 2, а), и растущие кристаллы сохраняют правильность строения кристаллической решетки. При дальнейшем движении кристаллы сталкиваются, и образовавшиеся группы имеют уже неправильную форму, но сохраняют правильность строения внутри каждого кристалла. Такие группы кристаллов называют зернами (рис.2, б, в, г и д). На рис. 2, е показаны границы зерен различных размеров, что влияет на эксплуатационные свойства металла. Крупнозернистый металл имеет низкое сопротивление удару, при обработке мешает получению требуемого класса шероховатости поверхности. Размеры зерен зависят от различных факторов: природы самого металла и условий кристаллизации. Так как процессы кристаллизации зависят от температуры и протекают во времени, то кривые охлаждения (рис. 3) строятся в координатах температура — время. На кривой 1 показан идеальный процесс кристаллизации металла без переохлаждения. Сначала температура понижается равномерно — кривая идет вниз. При достижении температуры затвердевания падение температуры прекращается — на кривой образуется горизонтальный участок. Это объясняется тем, что груп- Рис. 3. Кривые охлаждения при кристаллизации: / — теоретическая кривая кристаллизации металла; 2 — кривая кристаллизации металла с переохлаждением; 3 — кривая кристаллизации неметалла ,пировка атомов идет с выделением тепла. По окончании затвердевания температура снова понижается. По закону кристаллизации чистых металлов каждый металл кристаллизуется при строго индивидуальной температуре. Практически кристаллизация протекает несколько иначе, так как часто имеет место переохлаждение, т. е. металл при температуре затвердевания остается жидким, и кристаллизация начинается при более низкой температуре. Разница между идеальной и истинной температурой кристаллизации называется степенью переохлаждения. Кривая 2 соответствует процессу кристаллизации с переохлаждением. Кривая 3 характерна для кристаллизации неметаллов: нет четко выраженной температуры кристаллизации, затвердевание происходит постепенно. Степень переохлаждения является важнейшим фактором, определяющим величину зерна. При большой скорости охлаждения степень переохлаждения больше и зёрна мельче. Так, при отливке тонкостенных изделий получается мелкозернистая структура, при отливке толстостенных — крупнозернистая. Вторичная кристаллизация (аллотропия). Некоторые металлы: железо, кобальт, оково и др. — имеют в твердом состоянии две и более кристаллических решеток при неодинаковых температурах. Существование одною Рис. 4. Аллотропические превращения в железе и того же металла в разных кристаллических формах называют аллотропией, а процесс перестройки одного вида атомов кристаллической решетки в другой — аллотропическим превращением. Аллотропные формы, в которые кристаллизуется металл, обозначают буквами а, р, у, 8 и т. д. Так, при температуре 1539° С железо из жидкого состояния переходит в твердое и образуется б-железо с объемно-центрированной кубической решеткой (рис. 4); между 1390 и 910° С устойчиво у-железо немагнитное с гранецентрированной кубической решеткой, которая при дальнейшем охлаждении не перестраивается. При температуре 768° С железо из немагнитного р-железа становится магнитным а-железом. Эти модификации имеют важное практическое значение для термической обраб
отки и подробно рассматриваются в гл. 4. Методы изучения структуры металлов. Исследование структур металлов и сплавов производится методами макро- и микроанализа, рентгеновского, спектрального, термического, а также дефектоскопии (рентгеновской, магнитной, ультразвуковой). Методом макроанализа изучается макроструктура, т. е. структура, видимая невооруженным глазом или с помощью лупы, при этом выявляются крупные дефекты: трещины, усадочные раковины, газовые пузыри и т. д., а также неравномерность распределения примесей в металле, и расположение волокна в поковках, прокате и т. д. Макроструктуру определяют по изломам металла, по макрошлифам. Макрошлиф — это образец металла или сплава, одна из сторон которого отшлифована, протравлена и рассматривается при помощи лупы. Микроанализ выявляет структуру металла или сплава по микрошлифам, рассматриваемым под микроскопом при увеличении до 2000х, а в электронных микроскопах — до 25 000х. Этот важнейший анализ определяет размеры и форму зерен, структурные составляющие, микродефекты, лежащие под поверхностью, качество термической обработки. Зная микроструктуру, можно объяснить причины неудовлетворительности свойств металла, не производя их исследование. С помощью рентгеновского анализа изучают структуру кристаллов, а также дефекты, лежащие в глубине. Этот анализ позволяет обнаружить дефекты, не разрушая металла. Широко применяют для исследования структуры металла гамма-лучи, проникающие в изделие на значительно большую глубину, чем рентгеновские. Магнитным методом исследуют дефекты в магнитных металлах (стали, никеле и др.) на глубине до 2 мм (непровар в сварных швах, трещины и т. д.). Ультразвуковым методом осуществляются эффективный контроль качества изделий и заготовок любых металлов на большой глубине. Ультразвук используют для контроля качества роторов, рельсов, поковок, проката и других изделий при необходимости сохранения целостности изделий.

Теги: , , , ,

Ультразвуковая сварка

Подлежащие сварке поверхности обезжиривают, сжимают в месте сварки и затем с помощью специального инструмента подводят ультразвуковые колебания частотой 15—70 кГц. Вследствие трения одной поверхности о другую в плоскости контакта выделяется теплота, металл пластически деформируется и при сближении поверхностей на расстояние действия межатомных сил между ними возникает прочная связь. Прочность ультразвуковой сварки выше прочности точечной контактной сварки. Сварка выполняется с помощью специальных установок; продолжительность сварки 1—3 с.

Теги: , , ,

Диффузионная сварка

Эту сварку применяют главным образом для соединения материалов, которые обычными методами сварки соединить трудно или невозможно, например: сталь с ниобием, титаном, чугуном, вольфрамом, металлокерамикой, золото с бронзой, металлы со стеклом, графитом. При сварке происходит взаимная диффузия атомов в поверхностных слоях контактирующих материалов, находящихся в твердом состоянии, нагретых до температуры ниже температуры плавления металлов. Необходимое для увеличения площади действительного контакта поверхностей сжимающее давление обеспечивается механическими, пневматическими и другими устройствами. В большинстве случаев диффузионная сварка проводится в вакууме.

Теги: , , , , , ,

КРАТКИЕ СВЕДЕНИЯ 0 НОВЕЙШИХ МЕТОДАХ ПОЛУЧЕНИЯ ВЫСОКОКАЧЕСТВЕННОЙ СТАЛИ

Способом электрошлакового переплава (ЭШП) получают высококачественные легированные стали. Для этого слиток обыкновенной стали превращают в электрод. Вследствие сопротивления проходящему через него току выделяется большое количество теплоты, отчего электрод плавится. Каждая капля расплавленного металла проходит через слой особого жидкого шлака и очищается от вредных примесей и газов. Другой способ — плазменно-дуговой переплав (ПДП). Источником тепла здесь служит плазменная дуга с температурой до 10 000° С. При использовании электроннолучевого переплава (ЭЛП) плавление происходит под действием потока электронов, излучаемых высоковольтной кобальтовой пушкой, с созданием в плавильном пространстве глубокого вакуума. Достоинствами всех этих способов является возможность получения стали и сплавов очень высокой чистоты, а также бездефектной стали, применение которой резко сокращает расход металла, облегчает массу конструкций, увеличивает их надежность и долговечность. Такая сталь необходима для атомной, реактивной, космической техники.

Теги: , ,