Тег «медь»

Первый сплав

Первый сплав (кривая 2) начинает кристаллизоваться при 300° С с выделением избыточных кристаллов свинца. Оставшаяся часть сплава бедна свинцом, значит, концентрация сурьмы в ней возрастает, и. когда она достигает 13%, при 246° С происходит окончательная кристаллизация (см. горизонтальный участок кривой). Второй сплав (кривая 3) кристаллизуется аналогично первому, но точка начала кристаллизации у него ниже, а кончается кристаллизация также при 246° С, Рис. 8. Диаграмма состояния сплавов свинец—сурьма когда концентрация сурьмы достигает 13%. Третий сплав (кривая 4) кристаллизуется полностью при одной температуре (246° С) с одновременным выпадением кристаллов свинца и сурьмы. Четвертый сплав (кривая 5) начинает кристаллизоваться при 400° С с выделением избыточных кристаллов сурьмы В жидком сплаве сурьмы становится все меньше, и, когда ее содержание снизится до 13%, при 246° С произойдет окончательная кристаллизация, Все точки начала и конца кристаллизации свинца, сурьмы и указанных четырех сплавов перенесем на основную диаграмму. Соединив все точки начала кристаллизации, получают линию ЛЕВ. Эта линия называется ликвидусом. Все сплавы, лежащие выше ликвидуса, находятся в жидком состоянии. Линия МЕМ называется солидусом. Ниже этой линии все сплавы находятся в твердом состоянии. В интервале между лик- видусом и солидусом имеются две фазы: жидкий сплав (ж. с.) и кристаллы одного из компонентов. В области МАЕ — жидкий сплав и кристаллы свинца, а в области ЕВЫ — жидкий сплав и кристаллы сурьмы. Сплав, содержащий 13% сурьмы, кристаллизующийся при одной температуре, называется эвтектическим. Он имеет самую низкую температуру кристаллизации и отличается равномерной структурой. Сплавы, содержащие менее 13% сурьмы, лежащие влево от эвтектики, называются доэвтектическими, а более 13% сурьмы — заэвтектическими. Структуры эвтектического, доэвтектического и заэвтектического сплавов сильно различаются между собой. Эвтектика — структура с равномерно распределенными компонентами. В доэвтектических сплавах наряду с эвтектикой имеются кристаллы свинца, в заэвтектических — наряду с эвтектикой кристаллы сурьмы Различие структур определяет различие свойств, сп:;авов. Для определения состояния сплава при любой температуре и нахождения точек кристаллизации с помощью диаграммы нужно из точки концентрации данного сплава восставить перпендикуляр до пересечения с линиями ликвидуса и солидуса. Точки пересечения перпендикуляра укажут начало и конец кристаллизации. Практическое применение диаграммы свинец— сурьма находят, например, при выборе подшипникового сплава. Пользуясь этой диаграммой, установили, что наиболее пригодными для подшипниковых сплавов являются заэвтектические сплавы, состоящие из мягкой эвтектики и твердых вкраплений сурьмы Мягкая основа несколько изнашивается, а твердые кристаллы сурьмы сохраняются, и поэтому в микроуглублениях мягкой основы хорошо удерживается смазка Наиболее подходящими сплавами для подшипников из всех заэвтектических оказались сплавы с содержанием 15—20% 5Ь, так как температуры кристаллизации (плавления) этих сплавов (340—360° С) соответствуют температурам, при которых происходит заливка подшипников. Диаграмма 2-го рода соответствует сплавам, у которых компоненты ив жидком и в твердом состоянии образуют раствор. К ним относятся сплавы медь—никель, железо—никель и др. Диаграмма состояния сплавов медь—никель приведена на рис. 9. Кривая / относится к чистой меди, точка кристаллизации которой 1083° С, а кривая 5 — к никелю, точка кристаллизации которого 1452° С. Кривая 2 характеризует кристаллизацию 20%-ного сплава никеля (или 80%-ного сплава меди). Началу кристаллизации этого сплава соответствует точка а, когда кристаллизуется Рис. 9. Диаграмма состояния сплавов медь—никель решетка меди, в которой имеется 20% никеля. В точке Ъ кристаллизация заканчивается. Аналогично кристаллизуется 40%-ный (кривая 3) и 80%-ный (кривая 4) сплавы никеля, однако точки начала (ш и аг) и конца и Ы) кристаллизации у первого сплава ниже, чем у второго. Перенеся все точки начала и конца кристаллизации меди и никеля и указанных выше сплавов на основную диаграмму (рис. 9 справа) и соединив эти точки, получим линию ликвидуса АаВ и линию солидуса АЬВ. Выше линии АаВ сплавы меди с никелем находятся в жидком состоянии, а ниже линии АЬВ — в твердом. В зоне между АаВ и АЬВ имеются две фазы: жидкий сплав и кристаллы твердого раствора
никеля в меди. Диаграмма 2-го рода отличается от диаграммы 1-го рода тем, что здесь образуется одна кристаллическая решетка, а значит, нет и эвтектического сплава, как это наблюдается у сплавов, образующих механическую смесь. Диаграмма 3-го рода, соответствующая сплавам, которые в результате затвердевания образуют химические соединения, в данном учебнике не рассматривается. В некоторых сплавах могут одновременно находиться механическая смесь, твердый раствор и химическое соединение. Примером служат железоуглеродистые сплавы — сталь и чугун, подробно рассматриваемые в главе 3.

Теги: , , , , , , , ,

Алюминиевые сплавы

Алюминиевые сплавы имеют плотность до 3 г/см3, высокие механические свойства. Они делятся на литейные и деформируемые (обрабатываемые давлением). Литейные алюминиевые сплавы (ГОСТ 2685—75) применяются для получения отливок. В зависимости от химического состава и свойств они делятся на пять групп, например АЛ2, АЛ4 и т. д. (цифры обозначают порядковый номер сплава). Деформируемые алюминиевые сплавы (согласно ГОСТ 4784—74) применяют для получения листов, проволоки, ленты, фасонных профилей и различных деталей ковкой, штамповкой или прессованием. К не-упрочняемым термической обработкой относятся сплавы алюминия с марганцем и алюминия с магнием и марганцем. Они обладают умеренной прочностью, имеют повышенную сопротивляемость коррозии, высокую пластичность, хорошо свариваются. Применяются для изготовления деталей, работающих в коррозионной среде, сварных деталей и деталей, получаемых глубокой штамповкой. Деформируемые сплавы, упрочняемые термообработкой, имеют небольшую плотность (около 3 г/см3), но высокую прочность (ав > 700 МПа); широко применяются в машиностроении и особенно в самолетостроении для изготовления ответственных деталей. Наиболее распространенным сплавом этой группы является дюралюминий, содержащий в качестве основного компонента медь и в качестве дополнительных легирующих элементов магний, марганец, титан и др. Дюралюминий маркируют буквой Д и порядковым номером, например Д1, Д16, Д18. Для защиты от коррозии листовой дюралюминий подвергают плакированию. В марких таких деформируемых алюминиевых сплавов, как АК4, АК6, цифра обозначает порядковый номер сплава, а буквы — название и назначение его (алюминиевый ковочный). Эти сплавы применяются для изготовления поршней авиационных моторов, лопастей винтов, картеров двигателей и других деталей машин.

Теги: , , , , ,

ЛЕГИРОВАННЫЕ СТАЛИ. СВОЙСТВА, МАРКИРОВКА, ПРИМЕНЕНИЕ

В легированной стали наряду с обычными примесями имеются легирующие элементы: хром, вольфрам, молибден, никель, а также кремний и марганец в большом количестве. Легированная сталь обладает ценнейшими свойствами, которых нет у углеродистой стали, и не имеет ее недостатков. Применение легированной стали экономит металл, повышает долговечность изделий, увеличивает производительность. В прогрессивной технике эта сталь имеет решающее значение. Легирующие элементы оказывают разностороннее влияние на свойства стали. Хром повышает твердость, уменьшает ржавление; никель дает высокую прочность и пластичность, коррозионную стойкость; вольфрам увеличивает твердость и красностойкость; ванадий повышает плотность, прочность, сопротивление удару, истиранию; кобальт повышает жаропрочность, магни-топроницаемость; молибден увеличивает красностойкость, прочность, сопротивление окислению при высоких температурах; марганец при содержании свыше 1% увеличивает твердость, износоустойчивость, стойкость против ударных нагрузок; титан повышает прочность, сопротивление коррозии; алюминий повышает окали-ностойкость; ниобий повышает кислотостойкость; медь уменьшает коррозию. В сталь вводят также бор, селен, азот, цирконий. В легированной стали может находиться одновременно несколько легирующих элементов. По назначению легирования сталь делится на три группы: конструкционная, инструментальная и сталь с особыми физическими и химическими свойствами. По содержанию легирующих элементов легированная сталь делится на низколегированную—не более 3% легирующих элементов; среднелегированную—3—10%; высоколегированную — свыше 10%. В маркировке легированной стали приняты следующие буквенные обозначения легирующих элементов: X — хром, Н —никель, А —азот, В —вольфрам, Е —селен, Г —марганец, Д —медь, Б —ниобий, Р —бор, П — фосфор, Ю—алюминий, М—молибден, К—кобальт, Ц —цирконий, Ф —ванадий. Эти буквы в сочетании с цифрами образуют марку стали. В ГОСТе устанавливаются буквы, характеризующие целую группу сталей: Р — быстрорежущие, Ш — шарикоподшипниковые, Е и Э—магнитные. Сочетание букв и цифр дает характеристику легированной стали. Если впереди марки стоят две цифры, они указывают среднее содержание углерода в сотых долях процента. Одна’цифра в начале марки означает среднее содержание углерода в десятых долях процента. Если в начале марки нет цифры, то количество углерода составляет 1% и выше. Цифры, следующие за буквами, показывают среднее содержание данного элемента в процентах. Если за буквой отсутствует цифра, то содержание данного элемента около 1%. Буква А в конце марки обозначает высококачественную сталь, содержащую меньше серы и фосфора. Например, 12Х2Н4А —это легированная сталь, высококачественная, с содержанием углерода 0,12%, хрома 2%, никеля 4%; сталь Г13 —легированная сталь с содержанием углерода 1% и более, марганца 13%. Для групп сталей, обозначенных одной буквой Р, Ш, Е, Э, правила маркировки не подходят. О них будет рассказано ниже. Конструкционная легированная сталь согласно ГОСТ 4543—71 делится на три группы: качественная, высококачественная и особо высококачественная. Высококачественная обозначается буквой А в конце марки, а особо высококачественная —буквой Ш через черточку. Например, 12ХНЗА — высококачественная, а ЗОГС-Ш —особо высококачественная. В качественной стали допускается содержание серы до 0,025%, а в высококачественной— до 0,015%. Область применения конструкционной легированной стали очень велика. Наибольшее распространение получили следующие стали. Хромистые, обладающие хорошей твердостью, прочностью, сравнительно недорогие. К ним относятся стали марок 15Х, 20Х, ЗОХ, 45Х, боросодержащие 40ХР, с цирконием 40ХЦ. Марганцевые, например 15Г, 20Г, 40Г, 45Г2, отличающиеся износоустойчивостью. Особенно износоустойчива сталь марки Г13, которую применяют для гусениц "тракторов, железнодорожных стрелок. Кремнистые и хромокремнистые (ЗЗХС, 55ХС), обладающие высокой твердостью и упругостью; применяются для пружин, рессор. Хромованадиевые (45ХФ, 40ХФА) особо прочные, плотные, хорошо противостоящие .истиранию, применяемые для автомобильных деталей, осей, валов. Хромомолибденовые (20ХМА, ЗОХМА) очень прочные, хорошо сваривающиеся, штампующиеся, используемые для осей, роторов. Хромомарганцевокремнистые стали —хромансиль (25ХГСА, ЗОХГСА), которые заменяют хромомрлибде-новую сталь и значительно дешевле ее. Хромоникелевые (12Х2Н4А, 20ХНЗА), очень прочные и пластичные; применяются для изготовления коленчатых валов, поршне

Теги: , , , , , , , ,

МЕДЬ И ЕЕ СПЛАВЫ

Медь. Медь получают из руд, содержащих 1—6% меди. Полученный обогащением концентрат из медных руд подвергают сначала обжигу для снижения содержания серы, а затем плавке в отражательных печах на медный штейн. Последующей переплавкой штейна в медеплавильном конверторе получают черновую медь, содержащую 98,4—99,4% меди. Черновую медь рафинируют для удаления вредных примесей, после чего содержание меди возрастает до 99,5—99,95% (технически чистая медь). Чистая медь — металл розовато-красного цвета. Ее кристаллическая решетка — кубическая гранецен-трированная. Плотность меди 8,93 г/см3, температура плавления 1083° С. Средние значения механических свойств технической меди в отожженном состоянии: ств = 250 МПа, б =45%; твердость НВ 60. Так как медь имеет наименьшее (после серебра) удельное электросопротивление, она широко применяется в электротехнике в качестве проводников электрического тока. Медь обладает хорошей теплопроводностью и коррозионной стойкостью во влажной атмосфере и воде. Чистая медь отличается высокой пластичностью и хорошо обрабатывается давлением в холодном и горячем состоянии. Согласно ГОСТ 859—66 для меди установлено девять марок: от М00 с содержанием 99,99% меди до М4 с содержанием 99,00% меди. Сплавы меди имеют более высокую прочность, лучшую обрабатываемость и лучшие литейные свойства, чем чистая медь. Технические медные сплавы делятся на две группы: латуни и бронзы.

Теги: , , , , , ,