Тег «чугун»

Первый сплав

Первый сплав (кривая 2) начинает кристаллизоваться при 300° С с выделением избыточных кристаллов свинца. Оставшаяся часть сплава бедна свинцом, значит, концентрация сурьмы в ней возрастает, и. когда она достигает 13%, при 246° С происходит окончательная кристаллизация (см. горизонтальный участок кривой). Второй сплав (кривая 3) кристаллизуется аналогично первому, но точка начала кристаллизации у него ниже, а кончается кристаллизация также при 246° С, Рис. 8. Диаграмма состояния сплавов свинец—сурьма когда концентрация сурьмы достигает 13%. Третий сплав (кривая 4) кристаллизуется полностью при одной температуре (246° С) с одновременным выпадением кристаллов свинца и сурьмы. Четвертый сплав (кривая 5) начинает кристаллизоваться при 400° С с выделением избыточных кристаллов сурьмы В жидком сплаве сурьмы становится все меньше, и, когда ее содержание снизится до 13%, при 246° С произойдет окончательная кристаллизация, Все точки начала и конца кристаллизации свинца, сурьмы и указанных четырех сплавов перенесем на основную диаграмму. Соединив все точки начала кристаллизации, получают линию ЛЕВ. Эта линия называется ликвидусом. Все сплавы, лежащие выше ликвидуса, находятся в жидком состоянии. Линия МЕМ называется солидусом. Ниже этой линии все сплавы находятся в твердом состоянии. В интервале между лик- видусом и солидусом имеются две фазы: жидкий сплав (ж. с.) и кристаллы одного из компонентов. В области МАЕ — жидкий сплав и кристаллы свинца, а в области ЕВЫ — жидкий сплав и кристаллы сурьмы. Сплав, содержащий 13% сурьмы, кристаллизующийся при одной температуре, называется эвтектическим. Он имеет самую низкую температуру кристаллизации и отличается равномерной структурой. Сплавы, содержащие менее 13% сурьмы, лежащие влево от эвтектики, называются доэвтектическими, а более 13% сурьмы — заэвтектическими. Структуры эвтектического, доэвтектического и заэвтектического сплавов сильно различаются между собой. Эвтектика — структура с равномерно распределенными компонентами. В доэвтектических сплавах наряду с эвтектикой имеются кристаллы свинца, в заэвтектических — наряду с эвтектикой кристаллы сурьмы Различие структур определяет различие свойств, сп:;авов. Для определения состояния сплава при любой температуре и нахождения точек кристаллизации с помощью диаграммы нужно из точки концентрации данного сплава восставить перпендикуляр до пересечения с линиями ликвидуса и солидуса. Точки пересечения перпендикуляра укажут начало и конец кристаллизации. Практическое применение диаграммы свинец— сурьма находят, например, при выборе подшипникового сплава. Пользуясь этой диаграммой, установили, что наиболее пригодными для подшипниковых сплавов являются заэвтектические сплавы, состоящие из мягкой эвтектики и твердых вкраплений сурьмы Мягкая основа несколько изнашивается, а твердые кристаллы сурьмы сохраняются, и поэтому в микроуглублениях мягкой основы хорошо удерживается смазка Наиболее подходящими сплавами для подшипников из всех заэвтектических оказались сплавы с содержанием 15—20% 5Ь, так как температуры кристаллизации (плавления) этих сплавов (340—360° С) соответствуют температурам, при которых происходит заливка подшипников. Диаграмма 2-го рода соответствует сплавам, у которых компоненты ив жидком и в твердом состоянии образуют раствор. К ним относятся сплавы медь—никель, железо—никель и др. Диаграмма состояния сплавов медь—никель приведена на рис. 9. Кривая / относится к чистой меди, точка кристаллизации которой 1083° С, а кривая 5 — к никелю, точка кристаллизации которого 1452° С. Кривая 2 характеризует кристаллизацию 20%-ного сплава никеля (или 80%-ного сплава меди). Началу кристаллизации этого сплава соответствует точка а, когда кристаллизуется Рис. 9. Диаграмма состояния сплавов медь—никель решетка меди, в которой имеется 20% никеля. В точке Ъ кристаллизация заканчивается. Аналогично кристаллизуется 40%-ный (кривая 3) и 80%-ный (кривая 4) сплавы никеля, однако точки начала (ш и аг) и конца и Ы) кристаллизации у первого сплава ниже, чем у второго. Перенеся все точки начала и конца кристаллизации меди и никеля и указанных выше сплавов на основную диаграмму (рис. 9 справа) и соединив эти точки, получим линию ликвидуса АаВ и линию солидуса АЬВ. Выше линии АаВ сплавы меди с никелем находятся в жидком состоянии, а ниже линии АЬВ — в твердом. В зоне между АаВ и АЬВ имеются две фазы: жидкий сплав и кристаллы твердого раствора
никеля в меди. Диаграмма 2-го рода отличается от диаграммы 1-го рода тем, что здесь образуется одна кристаллическая решетка, а значит, нет и эвтектического сплава, как это наблюдается у сплавов, образующих механическую смесь. Диаграмма 3-го рода, соответствующая сплавам, которые в результате затвердевания образуют химические соединения, в данном учебнике не рассматривается. В некоторых сплавах могут одновременно находиться механическая смесь, твердый раствор и химическое соединение. Примером служат железоуглеродистые сплавы — сталь и чугун, подробно рассматриваемые в главе 3.

Теги: , , , , , , , ,

Антифрикционные сплавы

Они применяются для изготовления вкладышей подшипников скольжения. Они должны иметь небольшую твердость, высокую теплопроводность, хорошую прирабатываемость, небольшой коэффициент трения, микропористость для удержания смазки, высокую коррозионную стойкость в среде масел. В качестве антифрикционных сплавов применяют антифрикционные чугуны (ГОСТ 1585—70), например АЧС-1; АЧС-2; АЧВ-1, бронзы, баббиты, алюминиевые сплавы, порошковые материалы. ГОСТ 1209—73 и ГОСТ 1320—74 рекомендуют для заливки вкладышей подшипников применять баббиты оловянные и свинцовые с добавкой меди, сурьмы, кальция, натрия и т. д.: например, Б83; Б83С; Б88; Б16; БКА. Наиболее качественными из этих баббитов являются баббиты на оловянной основе Б88 и Б83. Они имеют хорошую сопротивляемость ударным нагрузкам, минимальный коэффициент трения (со смазкой). Применяются для изготовления ответственных подшипников паровых турбин, мощных электродвигателей, турбокомпрессоров. Низкая температура плавления баббитов (380—480° С) облегчает их применение для заливки подшипников. Из алюминиевых антифрикционных сплавов наибольшее применение имеет сплав АСМ, который заменил бронзу БрСЗО в подшипниках коленчатых валов трактора.  

Теги: , , , ,

ПЛАСТИЧЕСКАЯ ДЕФОРМАЦИЯ, ЕЕ ВЛИЯНИЕ НА СТРУКТУРУ МЕТАЛЛОВ

С возникновением остаточных деформаций от удара или давления металл меняет свою форму в желаемом направлении без разрушения. Одновременно происходит изменение структуры металла и его механических и физических свойств. Такое необратимое изменение формы называется пластической деформацией. Для создания пластической деформации металл необходимо подвергнуть напряжениям, которые больше его предела упругости, но меньше предела прочности. Обработка металлов давлением применима только к металлам, обладающим достаточной пластичностью, и неприменима к хрупким металлам (например, к чугуну). Давлением обрабатывают сталь, медные, алюминиевые, магниевые и другие сплавы. Этот вид обработки является высокопроизводительным.

Теги: , , ,

Разливка стали

Разливка стали — важная операция, в большой степени определяющая качество готового изделия. Имеются два способа разливки: в изложницы и непрерывная разливка. Разливка в чугунные формы — изложницы имеет много недостатков. Стоимость изложниц велика, крупные слитки нужно обжимать на мощных прокатных станах. Это удорожает процесс, снижает производительность. Неизбежно при этом появление в слитках дефектов, усадочных раковин. Непрерывная разливка стали имеет огромные преимущества перед разливкой в изложницы и лишена ее недостатков. При использовании этого способа сокращается цикл производства, создаются условия для механизации и автоматизации процессов, уменьшаются расходы по переделу. Схема непрерывной разливки стали представлена на рис. 16. Из разливочного ковша / сталь поступает в промежуточное устройство 2, а затем — в кристаллизатор 3, охлаждаемый водой. Металл вначале кристаллизуется на дне кристаллизатора,, образованном плитой — затравкой. Когда металл заполнит кристаллизатор, включают механизм вытягивания, и затравка вместе с формирующимся слитком вытягивается из кристаллизатора, попадает в зону 4 вторичного охлаждения, продвигается вытяжными роликами 5, а затем газовым резаком 6 автоматически разрезается на слитки нужной длины. В решениях XXV съезда КПСС развитию непрерывной разливки стали уделено особое внимание.

Теги: , , , ,