Тег «сплавы»

Первый сплав

Первый сплав (кривая 2) начинает кристаллизоваться при 300° С с выделением избыточных кристаллов свинца. Оставшаяся часть сплава бедна свинцом, значит, концентрация сурьмы в ней возрастает, и. когда она достигает 13%, при 246° С происходит окончательная кристаллизация (см. горизонтальный участок кривой). Второй сплав (кривая 3) кристаллизуется аналогично первому, но точка начала кристаллизации у него ниже, а кончается кристаллизация также при 246° С, Рис. 8. Диаграмма состояния сплавов свинец—сурьма когда концентрация сурьмы достигает 13%. Третий сплав (кривая 4) кристаллизуется полностью при одной температуре (246° С) с одновременным выпадением кристаллов свинца и сурьмы. Четвертый сплав (кривая 5) начинает кристаллизоваться при 400° С с выделением избыточных кристаллов сурьмы В жидком сплаве сурьмы становится все меньше, и, когда ее содержание снизится до 13%, при 246° С произойдет окончательная кристаллизация, Все точки начала и конца кристаллизации свинца, сурьмы и указанных четырех сплавов перенесем на основную диаграмму. Соединив все точки начала кристаллизации, получают линию ЛЕВ. Эта линия называется ликвидусом. Все сплавы, лежащие выше ликвидуса, находятся в жидком состоянии. Линия МЕМ называется солидусом. Ниже этой линии все сплавы находятся в твердом состоянии. В интервале между лик- видусом и солидусом имеются две фазы: жидкий сплав (ж. с.) и кристаллы одного из компонентов. В области МАЕ — жидкий сплав и кристаллы свинца, а в области ЕВЫ — жидкий сплав и кристаллы сурьмы. Сплав, содержащий 13% сурьмы, кристаллизующийся при одной температуре, называется эвтектическим. Он имеет самую низкую температуру кристаллизации и отличается равномерной структурой. Сплавы, содержащие менее 13% сурьмы, лежащие влево от эвтектики, называются доэвтектическими, а более 13% сурьмы — заэвтектическими. Структуры эвтектического, доэвтектического и заэвтектического сплавов сильно различаются между собой. Эвтектика — структура с равномерно распределенными компонентами. В доэвтектических сплавах наряду с эвтектикой имеются кристаллы свинца, в заэвтектических — наряду с эвтектикой кристаллы сурьмы Различие структур определяет различие свойств, сп:;авов. Для определения состояния сплава при любой температуре и нахождения точек кристаллизации с помощью диаграммы нужно из точки концентрации данного сплава восставить перпендикуляр до пересечения с линиями ликвидуса и солидуса. Точки пересечения перпендикуляра укажут начало и конец кристаллизации. Практическое применение диаграммы свинец— сурьма находят, например, при выборе подшипникового сплава. Пользуясь этой диаграммой, установили, что наиболее пригодными для подшипниковых сплавов являются заэвтектические сплавы, состоящие из мягкой эвтектики и твердых вкраплений сурьмы Мягкая основа несколько изнашивается, а твердые кристаллы сурьмы сохраняются, и поэтому в микроуглублениях мягкой основы хорошо удерживается смазка Наиболее подходящими сплавами для подшипников из всех заэвтектических оказались сплавы с содержанием 15—20% 5Ь, так как температуры кристаллизации (плавления) этих сплавов (340—360° С) соответствуют температурам, при которых происходит заливка подшипников. Диаграмма 2-го рода соответствует сплавам, у которых компоненты ив жидком и в твердом состоянии образуют раствор. К ним относятся сплавы медь—никель, железо—никель и др. Диаграмма состояния сплавов медь—никель приведена на рис. 9. Кривая / относится к чистой меди, точка кристаллизации которой 1083° С, а кривая 5 — к никелю, точка кристаллизации которого 1452° С. Кривая 2 характеризует кристаллизацию 20%-ного сплава никеля (или 80%-ного сплава меди). Началу кристаллизации этого сплава соответствует точка а, когда кристаллизуется Рис. 9. Диаграмма состояния сплавов медь—никель решетка меди, в которой имеется 20% никеля. В точке Ъ кристаллизация заканчивается. Аналогично кристаллизуется 40%-ный (кривая 3) и 80%-ный (кривая 4) сплавы никеля, однако точки начала (ш и аг) и конца и Ы) кристаллизации у первого сплава ниже, чем у второго. Перенеся все точки начала и конца кристаллизации меди и никеля и указанных выше сплавов на основную диаграмму (рис. 9 справа) и соединив эти точки, получим линию ликвидуса АаВ и линию солидуса АЬВ. Выше линии АаВ сплавы меди с никелем находятся в жидком состоянии, а ниже линии АЬВ — в твердом. В зоне между АаВ и АЬВ имеются две фазы: жидкий сплав и кристаллы твердого раствора
никеля в меди. Диаграмма 2-го рода отличается от диаграммы 1-го рода тем, что здесь образуется одна кристаллическая решетка, а значит, нет и эвтектического сплава, как это наблюдается у сплавов, образующих механическую смесь. Диаграмма 3-го рода, соответствующая сплавам, которые в результате затвердевания образуют химические соединения, в данном учебнике не рассматривается. В некоторых сплавах могут одновременно находиться механическая смесь, твердый раствор и химическое соединение. Примером служат железоуглеродистые сплавы — сталь и чугун, подробно рассматриваемые в главе 3.

Теги: , , , , , , , ,

Алюминиевые сплавы

Алюминиевые сплавы имеют плотность до 3 г/см3, высокие механические свойства. Они делятся на литейные и деформируемые (обрабатываемые давлением). Литейные алюминиевые сплавы (ГОСТ 2685—75) применяются для получения отливок. В зависимости от химического состава и свойств они делятся на пять групп, например АЛ2, АЛ4 и т. д. (цифры обозначают порядковый номер сплава). Деформируемые алюминиевые сплавы (согласно ГОСТ 4784—74) применяют для получения листов, проволоки, ленты, фасонных профилей и различных деталей ковкой, штамповкой или прессованием. К не-упрочняемым термической обработкой относятся сплавы алюминия с марганцем и алюминия с магнием и марганцем. Они обладают умеренной прочностью, имеют повышенную сопротивляемость коррозии, высокую пластичность, хорошо свариваются. Применяются для изготовления деталей, работающих в коррозионной среде, сварных деталей и деталей, получаемых глубокой штамповкой. Деформируемые сплавы, упрочняемые термообработкой, имеют небольшую плотность (около 3 г/см3), но высокую прочность (ав > 700 МПа); широко применяются в машиностроении и особенно в самолетостроении для изготовления ответственных деталей. Наиболее распространенным сплавом этой группы является дюралюминий, содержащий в качестве основного компонента медь и в качестве дополнительных легирующих элементов магний, марганец, титан и др. Дюралюминий маркируют буквой Д и порядковым номером, например Д1, Д16, Д18. Для защиты от коррозии листовой дюралюминий подвергают плакированию. В марких таких деформируемых алюминиевых сплавов, как АК4, АК6, цифра обозначает порядковый номер сплава, а буквы — название и назначение его (алюминиевый ковочный). Эти сплавы применяются для изготовления поршней авиационных моторов, лопастей винтов, картеров двигателей и других деталей машин.

Теги: , , , , ,

ЭЛЕКТРОФИЗИЧЕСКИЕ И ЭЛЕКТРОХИМИЧЕСКИЕ МЕТОДЫ ОБРАБОТКИ МЕТАЛЛОВ

По сравнению с обычной обработкой металлов резанием, электрическая обработка имеет ряд преимуществ: позволяет обрабатывать детали из материалов с самыми высокими физико-химическими свойствами, обработка которых обычными методами затруднена или совсем невозможна (твердые сплавы, алмаз, кварц); дает возможность обрабатывать самые сложные поверхности (например, отверстия с криволинейной осью, глухие отверстия фасонного профиля).

Теги: ,

Антифрикционные сплавы

Они применяются для изготовления вкладышей подшипников скольжения. Они должны иметь небольшую твердость, высокую теплопроводность, хорошую прирабатываемость, небольшой коэффициент трения, микропористость для удержания смазки, высокую коррозионную стойкость в среде масел. В качестве антифрикционных сплавов применяют антифрикционные чугуны (ГОСТ 1585—70), например АЧС-1; АЧС-2; АЧВ-1, бронзы, баббиты, алюминиевые сплавы, порошковые материалы. ГОСТ 1209—73 и ГОСТ 1320—74 рекомендуют для заливки вкладышей подшипников применять баббиты оловянные и свинцовые с добавкой меди, сурьмы, кальция, натрия и т. д.: например, Б83; Б83С; Б88; Б16; БКА. Наиболее качественными из этих баббитов являются баббиты на оловянной основе Б88 и Б83. Они имеют хорошую сопротивляемость ударным нагрузкам, минимальный коэффициент трения (со смазкой). Применяются для изготовления ответственных подшипников паровых турбин, мощных электродвигателей, турбокомпрессоров. Низкая температура плавления баббитов (380—480° С) облегчает их применение для заливки подшипников. Из алюминиевых антифрикционных сплавов наибольшее применение имеет сплав АСМ, который заменил бронзу БрСЗО в подшипниках коленчатых валов трактора.  

Теги: , , , ,