Тег «сталь»

Первый сплав

Первый сплав (кривая 2) начинает кристаллизоваться при 300° С с выделением избыточных кристаллов свинца. Оставшаяся часть сплава бедна свинцом, значит, концентрация сурьмы в ней возрастает, и. когда она достигает 13%, при 246° С происходит окончательная кристаллизация (см. горизонтальный участок кривой). Второй сплав (кривая 3) кристаллизуется аналогично первому, но точка начала кристаллизации у него ниже, а кончается кристаллизация также при 246° С, Рис. 8. Диаграмма состояния сплавов свинец—сурьма когда концентрация сурьмы достигает 13%. Третий сплав (кривая 4) кристаллизуется полностью при одной температуре (246° С) с одновременным выпадением кристаллов свинца и сурьмы. Четвертый сплав (кривая 5) начинает кристаллизоваться при 400° С с выделением избыточных кристаллов сурьмы В жидком сплаве сурьмы становится все меньше, и, когда ее содержание снизится до 13%, при 246° С произойдет окончательная кристаллизация, Все точки начала и конца кристаллизации свинца, сурьмы и указанных четырех сплавов перенесем на основную диаграмму. Соединив все точки начала кристаллизации, получают линию ЛЕВ. Эта линия называется ликвидусом. Все сплавы, лежащие выше ликвидуса, находятся в жидком состоянии. Линия МЕМ называется солидусом. Ниже этой линии все сплавы находятся в твердом состоянии. В интервале между лик- видусом и солидусом имеются две фазы: жидкий сплав (ж. с.) и кристаллы одного из компонентов. В области МАЕ — жидкий сплав и кристаллы свинца, а в области ЕВЫ — жидкий сплав и кристаллы сурьмы. Сплав, содержащий 13% сурьмы, кристаллизующийся при одной температуре, называется эвтектическим. Он имеет самую низкую температуру кристаллизации и отличается равномерной структурой. Сплавы, содержащие менее 13% сурьмы, лежащие влево от эвтектики, называются доэвтектическими, а более 13% сурьмы — заэвтектическими. Структуры эвтектического, доэвтектического и заэвтектического сплавов сильно различаются между собой. Эвтектика — структура с равномерно распределенными компонентами. В доэвтектических сплавах наряду с эвтектикой имеются кристаллы свинца, в заэвтектических — наряду с эвтектикой кристаллы сурьмы Различие структур определяет различие свойств, сп:;авов. Для определения состояния сплава при любой температуре и нахождения точек кристаллизации с помощью диаграммы нужно из точки концентрации данного сплава восставить перпендикуляр до пересечения с линиями ликвидуса и солидуса. Точки пересечения перпендикуляра укажут начало и конец кристаллизации. Практическое применение диаграммы свинец— сурьма находят, например, при выборе подшипникового сплава. Пользуясь этой диаграммой, установили, что наиболее пригодными для подшипниковых сплавов являются заэвтектические сплавы, состоящие из мягкой эвтектики и твердых вкраплений сурьмы Мягкая основа несколько изнашивается, а твердые кристаллы сурьмы сохраняются, и поэтому в микроуглублениях мягкой основы хорошо удерживается смазка Наиболее подходящими сплавами для подшипников из всех заэвтектических оказались сплавы с содержанием 15—20% 5Ь, так как температуры кристаллизации (плавления) этих сплавов (340—360° С) соответствуют температурам, при которых происходит заливка подшипников. Диаграмма 2-го рода соответствует сплавам, у которых компоненты ив жидком и в твердом состоянии образуют раствор. К ним относятся сплавы медь—никель, железо—никель и др. Диаграмма состояния сплавов медь—никель приведена на рис. 9. Кривая / относится к чистой меди, точка кристаллизации которой 1083° С, а кривая 5 — к никелю, точка кристаллизации которого 1452° С. Кривая 2 характеризует кристаллизацию 20%-ного сплава никеля (или 80%-ного сплава меди). Началу кристаллизации этого сплава соответствует точка а, когда кристаллизуется Рис. 9. Диаграмма состояния сплавов медь—никель решетка меди, в которой имеется 20% никеля. В точке Ъ кристаллизация заканчивается. Аналогично кристаллизуется 40%-ный (кривая 3) и 80%-ный (кривая 4) сплавы никеля, однако точки начала (ш и аг) и конца и Ы) кристаллизации у первого сплава ниже, чем у второго. Перенеся все точки начала и конца кристаллизации меди и никеля и указанных выше сплавов на основную диаграмму (рис. 9 справа) и соединив эти точки, получим линию ликвидуса АаВ и линию солидуса АЬВ. Выше линии АаВ сплавы меди с никелем находятся в жидком состоянии, а ниже линии АЬВ — в твердом. В зоне между АаВ и АЬВ имеются две фазы: жидкий сплав и кристаллы твердого раствора
никеля в меди. Диаграмма 2-го рода отличается от диаграммы 1-го рода тем, что здесь образуется одна кристаллическая решетка, а значит, нет и эвтектического сплава, как это наблюдается у сплавов, образующих механическую смесь. Диаграмма 3-го рода, соответствующая сплавам, которые в результате затвердевания образуют химические соединения, в данном учебнике не рассматривается. В некоторых сплавах могут одновременно находиться механическая смесь, твердый раствор и химическое соединение. Примером служат железоуглеродистые сплавы — сталь и чугун, подробно рассматриваемые в главе 3.

Теги: , , , , , , , ,

Испытания на растяжение

Для испытания на растяжение из испытуемого материала изготовляют круглые (рис. 5, а) или плоские ‘рис. 5, б) образцы, форма и размеры которых установлены ГОСТ 1497—73. Образцы подразделяются на нормальные и пропорциональные. Цилиндрические образцы диаметром 10 мм, у которых расчетная длина о равна десятикратному диаметру, именуются длинными, а образцы, у которых /0 = 5й, — короткими. При испытаниях на растяжение образец растягивается под действием плавно возрастающей нагрузки до разрушения. Из числа испытательных (разрывных) машин с механическим приводом и рычажно-маятниковым силоиз-мерительным механизмом наиболее употребительна машина ИМ-4Р. Типичная рабочая диаграмма для пластичных материалов и сплавов, дающих площадку текучести, показана на рис. 5, в; на кривых растяжения многих сплавов площадки текучести отсутствуют. Диаграмма отражает характерные участки и точки, позволяющие определить ряд ценных качеств испытуемых металлов и сплавов. На участке 0—Р1ЛХ удлинение образца А/ увеличивается прямо пропорционально нагрузке. Нагрузку РПц. Д° которой сохраняется закон пропорциональности между нагрузкой и деформацией, называют пределом пропорциональности. Его определяют по формуле опц = Рт/Р0МПа, где Р0 — начальная площадь поперечного сечения образца. На участке от Р1Щ до Ру] диаграммы появляется остаточное удлинение образца. Для практических целей напряжение, при котором остаточное удлинение достигает 0,005—0,05% от начальной расчетной длины образца, условились называть условным пределом упругости. В обозначении условного предела упругости указывают остаточную деформацию, например о00ъ. Выше точки Рул кривая диаграммы растяжения плавно переходит в горизонтальный участок при постоянной нагрузке Рт. Нагрузку Р1г при которой начинается течение металла или сплава, называют пределом текучести, а участок ТТ1 — площадкой текучести. Напряжение, соответствующее максимальной нагрузке Рр, которую выдерживает образец в процессе испытания до разрушения, называют пределом прочности — временным сопротивлением разрыву (в МПа): До точки В диаграммы (рис. 5, в) образец удлиняется равномерно по всей длине с одновременным уменьшением толщины. В точке В начинается образование шейки. Образец в одном месте становится все тоньше — продолжает удлиняться и, наконец, разрывается. С образованием шейки рвутся только пластичные металлы. Поэтому участок кривой ВК характеризует показатель пластичности металла. В качестве характеристики пластичности используют относительное удлинение образца. Относительным удлинением б после разрыва называют отношение приращения длины /к образца после разрыва к его первоначальной расчетной длине /0, выраженное в %. Показателем пластичности является также относительное сужение 1|’ металла, которое определяется как отношение уменьшения площади Рк поперечного сечения образца после разрыва к первоначальной площади Р0 его поперечного сечения, выраженное в %. Относительное удлинение и относительное сужение определяют так называемую статическую вязкость металлов и сплавов. Методы измерения твердости. Твердость — это свойство металла сопротивляться при вдавливании в него более твердого тела. Испытания твердости металлов получили широкое распространение в условиях производства как наиболее простой и быстрый способ определения механического свойства. Существует три (статических) метода испытания на твердость, называемых по имени их изобретателей: метод Бринелля (ГОСТ 9012—59); метод Роквелла (ГОСТ 9013—59); метод Виккерса (ГОСТ 2999—75). Измерение твердости вдавливанием стального шарика по методу Бринелля заключается в том, что с помощью твердомера ТШ в поверхность испытуемого металла вдавливается стальной закаленный шарик диаметром 2,5; 5 или 10 мм под действием статической нагрузки (рис. 6, а). Отношение нагрузки Р к площади поверхности полученного отпечатка (лунки) дает значение твердости, обозначаемое НВ.

Теги: ,

Ванадий

Ванадий является сильным карбидообразующим элементом и создает прочные карбиды, которые затрудняют рост зерна при нагреве под закалку и уменьшают склонность стали к перегреву. Под влиянием ванадия увеличивается красностойкость быстрорежущей стали и повышается эффект вторичной твердости при отпуске. Углерод в быстрорежущей стали очень важен как элемент, придающий стали способность закаливаться на высокую твердость. Хром в количестве около 4% настолько сильно понижает критическую скорость закалки, что сталь становится «самозакаливающейся», т. е. закаливается на воздухе. При содержании хрома выше нормы резко увеличивается количество остаточного аустенита в структуре закаленной стали. В быстрорежущей стали содержатся марганец и кремний (не более 0,4% каждого), сера и фосфор (не свыше 0,06% в сумме). Изделия из быстрорежущей стали до температуры закалки необходимо нагревать ступенчато: вначале медленно до 800—850° С, а затем более быстро до установленной температуры закалки (1230—1300° С). Такой способ нагрева позволяет избежать тепловых напряжений за счет уменьшения разности между температурой поверхности и сердцевины изделия. В качестве охлаждающей среды используют минеральное масло. Применяется также охлаждение на воздухе. Структура закаленной быстрорежущей стали представляет собой сочетание первичного мартенсита, остаточного аустенита и сложных карбидов. После закалки изделия из быстрорежущей стали обязательно подвергают отпуску. Отпуск таких сталей имеет свои особенности. Как правило, изделия подвергают многократному отпуску (два-три раза) при температуре 560° С для стали Р9 и 580° С для стали Р18 с выдержкой 1 ч. Если после закалки применяют обработку холодом при температуре —80° С, то выполняют только один отпуск. Объясняется это тем, что при указанной отрицательной температуре в быстрорежущих сталях заканчивается бездиффузионное мартенситное превращение —основная часть остаточного аустенита превращается в мартенсит. Таким образом, после термической обработки структура быстрорежущей стали представляет собой отпущенный мартенсит и карбиды.

Теги: , ,

Сварные трубы

Сварные трубы изготовляют печной, газовой и электрической сваркой из горячекатаной ленты (штрипса) низкоуглеродистой стали в непрерывных прокатных станах. Поперечную и косую прокатку применяют для получения изделий, которые имеют форму тел вращения. Периодический прокат имеет закономерно изменяющееся, периодически повторяющееся по длине сечение. Полученные периодической прокаткой профили представляют цепь деталей, имеющих различную форму и размеры (шатуны, оси, валы, рычаги и др.) и являющихся заготовками для последующей ковки и штамповки, а также готовых деталей, получаемых последующей резкой периодического проката. Прокатка производится на станах обычной и специальной конструкции. Производительность ковки и штамповки периодического проката и экономия металла на 25—35% выше, чем обычного проката, расход штампов ниже. Применяются продольный и поперечно-винтовой (для шарообразных заготовок, например, шарикоподшипников) виды проката. Гнутые профили, применяемые в строительстве зданий, получают прокаткой стального листа, ленты, швеллеров, уголков в роликогибочных станах периодического и непрерывного действия. Прокаткой цветных металлов и их сплавов получают полосы, листы, ленты, трубы и различные другие профили. В основном этот процесс прокатки состоит из тех же операций, что и прокатка стали.

Теги: ,