Тег «железо»

ЧУГУНЫ. СОСТАВ, СВОЙСТВА, СОРТА, МАРКИРОВКА, ОБЛАСТЬ ПРИМЕНЕНИЯ

Чугун состоит из железа (до 92%) и углерода (от 2,14 до 5%), кроме того, имеются примеси кремния (до 4,3%), марганца (до 2%), серы (до 0,07%), фосфора (до 1,2%). Влияние примесей чугуна на его свойства. Углерод в чугуне бывает в двух видах: 1) в свободном состоянии — в виде графита; 2) в химическом соединении с железом, называемом цементитом. Если углерод в чугуне находится в виде графита, чугун имеет в изломе серый цвет и называется серым; если в виде цементита — этот чугун называется белым. Кремний способствует получению серого чугуна, а марганец — белого. Сера и фосфор — вредные примеси. Сера придает хрупкость чугуну, делает его густотекучим и пузырчатым. Фосфор увеличивает хрупкость чугуна, но делает его жидкотекучим. Серый и белый чугуны резко.различаются по свойствам. Белые чугуны очень твердые и хрупкие, плохо отливаются, плохо обрабатываются инструментом, идут на переплавку в сталь и называются передельными чугунами. Часть белого чугуна идет на получение ковкого чугуна. Серые чугуны — это литейные чугуны: они обладают хорошими литейными качествами — ж’идкотекучестью, мягкостью, хорошо обрабатываются, сопротивляются износу. Серые чугуны с высоким содержанием фосфора (0,3—1,2%) жидко-текучи и используются для художественного литья. Серый чугун поступает в производство в виде отливок и характеризуется прочностью и твердостью. Согласно ГОСТ 1412—70 установлены следующие марки отливок из серого чугуна: СЧ 00, СЧ 120-280, СЧ 150-320, СЧ 180-360, СЧ 210-400, СЧ 240-440, СЧ 280-480, СЧ 320-520, СЧ 360-560, СЧ 400-600, СЧ 440-640. СЧ обозначает серый чугун. Первое число показывает предел прочности (в МПа) при испытании на разрыв, а второе — предел прочности при испытании на изгиб. Чугун Марки СЧ 00 не испытывается. Кроме указанных чугунов применяются легированные чугуны, которые наряду с обычными примесями содержат легирующие элементы: хром, никель, титан и другие. Эти элементы улучшают твердость, прочность, износоустойчивость или сопротивление ржавлению и т. д. Различаются хромистые, титановые, никелевые чугуны. Их применяют для изготовления коленчатых валов, деталей автомобилей, поршневых колец, дизелей и т. д.

Теги: , , , , , ,

ЖЕЛЕЗОУГЛЕРОДИСТЫЕ СПЛАВЫ

К железоуглеродистым сплавам относятся чугун и сталь. Чугун — самый дешевый машиностроительный материал, обладающий хорошими литейными свойствами. Кроме того он является исходным продуктом для получения стали.

Теги: , , , ,

ФИЗИЧЕСКИЕ СВОЙСТВА МЕТАЛЛОВ

К физическим свойствам металлов относят: цвет, плотность, температуру плавления, теплопроводность, тепловое расширение, теплоемкость, электропроводность, магнитные свойства. Цветом называют способность металлов отражать падающие на них световые лучи. Например, медь имеет розово-красный цвет, алюминий —серебристо-белый и др. Плотность металла характеризуется его массой, заключенной в единице объема. Плавление — процесс перехода металла из твердого состояния в жидкое. Температура плавления железа 1539° С, меди 1083° С, олова 232° С. Теплопроводность — способность металлов проводить тепло при нагревании и отдавать его при охлаждении. Лучшей теплопроводностью обладают чистые металлы: серебро, медь, алюминий. Теплопроводность используется при теплотехнических расчетах. Тепловое расширение —свойство металлов расширяться при нагревании. При охлаждении происходит обратное явление. Это свойство учитывают при строительстве мостовых ферм, прокладке железнодорожных рельс и др. Теплоемкость —способность металла при нагревании поглощать определенное количество тепла. Для сравнения теплоемкостей различных металлов служит удельная теплоемкость — количество тепла в больших калориях, которое необходимо, чтобы повысить температуру 1 кг металла на Г С. Способность металлов проводить электрический ток оценивают двумя взаимно противоположными характеристиками — электропроводностью и электросопротивлением. Хорошая электропроводность необходима, например, для токонесущих проводов (медь, алюминий). При изготовлении электронагревателей приборов и печей необходимы сплавы с высоким электросопротивлением (нихром, константан, манганин). Магнитные свойства —способность металлов намагничиваться. Высокими магнитными свойствами обладают железо, никель, кобальт и их сплавы, называемые ферромагнитными. Некоторые материалы по прекращении подачи тока теряют магнитные свойства. Материалы с магнитными свойствами применяют в электротехнической аппаратуре.

Теги: , , , , , , ,

ДИАГРАММА СОСТОЯНИЯ СПЛАВОВ ЖЕЛЕЗО—УГЛЕРОД

В диаграмме состояния железо—углерод (цементит) рассматриваются процессы кристаллизации, протекающие в железоуглеродистых сплавах (стали и белом чугуне), и превращения в их структурах, полученные при медленном охлаждении от расплавленного состояния до комнатной температуры (рис. 10). По вертикали откладывают температуру, по горизонтали — концентрацию углерода от 0 до 6,67% (более 6,67% углерода в железе не растворяется). Сплавы, содержащие углерода до 2,14%,—это сталь, а от 2,14 до 6,67% — чугун. Кристаллизация всех железоуглеродистых сплавов начинается при температурах, лежащих на линии АСБ (ликвидус). По линии АС кристаллизуется аустенит А, по линии СО — цементит первичный Ц1. Линия АЕСР является солидусом, ниже этой линии все сплавы железа с углеродом находятся в твердом состоянии. После затвердевания в железоуглеродистых сплавах образуются различные структуры. В чугуне образуется механическая смесь кристаллов аустенита и цементита Ц1. Чугун, содержащий 4,3% углерода, кристаллизуется при одной температуре 1147° С. Его структура представляет равномерную механическую смесь аустенита и цементита Ц1. Такой чугун называется эвтектическим или ледебуритным Л. Чугуны, содержащие менее 4,3% углерода, называются доэвтек-тическими, их кристаллизация начинается при температурах, лежащих на линии АС, с выделением аустенита, и кончается при температурах, лежащих на линии ЕР, при этом образуются структуры Л + А -+* 4- ЦП. ЦП при понижении температуры выделяется из аустенита. При дальнейшем понижении температуры из аустенита продолжает выделяться цементит ЦП и, когда его остается 0,8%, при температуре 727° С аустенит переходит в перлит П. Таким образом, в до-эвтектических чугунах при полном медленном охлаждении образуются структуры Л + П + ЦП. Чугуны, содержащие более 4,3% углерода, называются заэвтектическими. Их кристаллизация начинается на линии СО с выделением цементита первичного и заканчивается на линии СР. При полном медленном охлаждении в заэвтектических чугунах образуется структура Л + ЦР Следует отметить, что в составе ледебурита при температуре ниже 727° С аустенит переходит в перлит. В практике большое значение имеют доэвтектические чугуны. Они служат для получения ковкого чугуна, о котором будет коротко рассказано ниже. Главную роль в процессах термической обработки стали играют структурные превращения. В результате затвердевания в стали образуется аустенит. При понижении температуры аустенит претерпевает вторичную кристаллизацию, связанную с изменением формы кристаллической решетки и растворимостью углерода, т. е. с выделением из аустенита феррита и цементита вторичного. В точке 5, соответствующей содержанию углерода 0,8%, при 727° С аустенит распадается и образуется равномерная смесь феррита с цементитом — перлит П. Эта сталь называется эвтектоидной. Сталь, содержащая менее 0,8% углерода, называется доэвтек-тоидной, а более 0,8% — заэвтектоидной. Распад аустенита в доэвтектоидной стали начинается при температурах, лежащих на линии 0′5, с выделением феррита Ф. При дальнейшем понижении температуры концентрация углерода в оставшемся аустените возрастает, и когда она достигает 0,8%, при 727° С аустенит переходит в перлит. Таким образом, в доэвтектоидной стали при полном медленном охлаждении получают структуры Л + Ф. В заэвтектоидной стали начало распада аустенита идет по линии 55 с выделением ЦП. Когда остается 0,8% углерода, он при 727° С переходит в перлит. Таким образом, в заэвтектоидной стали при полном медленном охлаждении получаются структуры П -ь» 4- ЦП. Линия 08Е называется линией верхних критических точек или линией начала распада аустенита (при охлаждении). Эта линия на диаграмме обозна-, чается Лез при нагревании и Ан при охлаждении. Линия (727° С) называется линией нижних кри- тических точек, линией конца распада аустенита при охлаждении или линией перлитных превращений. На диаграмме она обозначается Ас\ при нагреве и Аг% при охлаждении. Диаграмма железо—углерод имеет важное практическое значение, так как на превращениях в структурах стали и чугуна основана термическая обработка, а термическая обработка изменяет и улучшает свойства сплавов. Подробно диаграмма железо—углерод рассматривается в гл. 4 (рис. 18).

Теги: , , , , , , ,