Алюминиевые сплавы

Алюминиевые сплавы имеют плотность до 3 г/см3, высокие механические свойства. Они делятся на литейные и деформируемые (обрабатываемые давлением). Литейные алюминиевые сплавы (ГОСТ 2685—75) применяются для получения отливок. В зависимости от химического состава и свойств они делятся на пять групп, например АЛ2, АЛ4 и т. д. (цифры обозначают порядковый номер сплава). Деформируемые алюминиевые сплавы (согласно ГОСТ 4784—74) применяют для получения листов, проволоки, ленты, фасонных профилей и различных деталей ковкой, штамповкой или прессованием. К не-упрочняемым термической обработкой относятся сплавы алюминия с марганцем и алюминия с магнием и марганцем. Они обладают умеренной прочностью, имеют повышенную сопротивляемость коррозии, высокую пластичность, хорошо свариваются. Применяются для изготовления деталей, работающих в коррозионной среде, сварных деталей и деталей, получаемых глубокой штамповкой. Деформируемые сплавы, упрочняемые термообработкой, имеют небольшую плотность (около 3 г/см3), но высокую прочность (ав > 700 МПа); широко применяются в машиностроении и особенно в самолетостроении для изготовления ответственных деталей. Наиболее распространенным сплавом этой группы является дюралюминий, содержащий в качестве основного компонента медь и в качестве дополнительных легирующих элементов магний, марганец, титан и др. Дюралюминий маркируют буквой Д и порядковым номером, например Д1, Д16, Д18. Для защиты от коррозии листовой дюралюминий подвергают плакированию. В марких таких деформируемых алюминиевых сплавов, как АК4, АК6, цифра обозначает порядковый номер сплава, а буквы — название и назначение его (алюминиевый ковочный). Эти сплавы применяются для изготовления поршней авиационных моторов, лопастей винтов, картеров двигателей и других деталей машин.

Теги: , , , , ,

ЭЛЕКТРОФИЗИЧЕСКИЕ И ЭЛЕКТРОХИМИЧЕСКИЕ МЕТОДЫ ОБРАБОТКИ МЕТАЛЛОВ

По сравнению с обычной обработкой металлов резанием, электрическая обработка имеет ряд преимуществ: позволяет обрабатывать детали из материалов с самыми высокими физико-химическими свойствами, обработка которых обычными методами затруднена или совсем невозможна (твердые сплавы, алмаз, кварц); дает возможность обрабатывать самые сложные поверхности (например, отверстия с криволинейной осью, глухие отверстия фасонного профиля).

Теги: ,

Ванадий

Ванадий является сильным карбидообразующим элементом и создает прочные карбиды, которые затрудняют рост зерна при нагреве под закалку и уменьшают склонность стали к перегреву. Под влиянием ванадия увеличивается красностойкость быстрорежущей стали и повышается эффект вторичной твердости при отпуске. Углерод в быстрорежущей стали очень важен как элемент, придающий стали способность закаливаться на высокую твердость. Хром в количестве около 4% настолько сильно понижает критическую скорость закалки, что сталь становится «самозакаливающейся», т. е. закаливается на воздухе. При содержании хрома выше нормы резко увеличивается количество остаточного аустенита в структуре закаленной стали. В быстрорежущей стали содержатся марганец и кремний (не более 0,4% каждого), сера и фосфор (не свыше 0,06% в сумме). Изделия из быстрорежущей стали до температуры закалки необходимо нагревать ступенчато: вначале медленно до 800—850° С, а затем более быстро до установленной температуры закалки (1230—1300° С). Такой способ нагрева позволяет избежать тепловых напряжений за счет уменьшения разности между температурой поверхности и сердцевины изделия. В качестве охлаждающей среды используют минеральное масло. Применяется также охлаждение на воздухе. Структура закаленной быстрорежущей стали представляет собой сочетание первичного мартенсита, остаточного аустенита и сложных карбидов. После закалки изделия из быстрорежущей стали обязательно подвергают отпуску. Отпуск таких сталей имеет свои особенности. Как правило, изделия подвергают многократному отпуску (два-три раза) при температуре 560° С для стали Р9 и 580° С для стали Р18 с выдержкой 1 ч. Если после закалки применяют обработку холодом при температуре —80° С, то выполняют только один отпуск. Объясняется это тем, что при указанной отрицательной температуре в быстрорежущих сталях заканчивается бездиффузионное мартенситное превращение —основная часть остаточного аустенита превращается в мартенсит. Таким образом, после термической обработки структура быстрорежущей стали представляет собой отпущенный мартенсит и карбиды.

Теги: , ,

Антифрикционные сплавы

Они применяются для изготовления вкладышей подшипников скольжения. Они должны иметь небольшую твердость, высокую теплопроводность, хорошую прирабатываемость, небольшой коэффициент трения, микропористость для удержания смазки, высокую коррозионную стойкость в среде масел. В качестве антифрикционных сплавов применяют антифрикционные чугуны (ГОСТ 1585—70), например АЧС-1; АЧС-2; АЧВ-1, бронзы, баббиты, алюминиевые сплавы, порошковые материалы. ГОСТ 1209—73 и ГОСТ 1320—74 рекомендуют для заливки вкладышей подшипников применять баббиты оловянные и свинцовые с добавкой меди, сурьмы, кальция, натрия и т. д.: например, Б83; Б83С; Б88; Б16; БКА. Наиболее качественными из этих баббитов являются баббиты на оловянной основе Б88 и Б83. Они имеют хорошую сопротивляемость ударным нагрузкам, минимальный коэффициент трения (со смазкой). Применяются для изготовления ответственных подшипников паровых турбин, мощных электродвигателей, турбокомпрессоров. Низкая температура плавления баббитов (380—480° С) облегчает их применение для заливки подшипников. Из алюминиевых антифрикционных сплавов наибольшее применение имеет сплав АСМ, который заменил бронзу БрСЗО в подшипниках коленчатых валов трактора.  

Теги: , , , ,